
User's Manual for Psd

for version 1.0

Pertti Kellom�aki, pk@cs.tut.fi

Tampere University of Technology

Software Systems Lab

Finland

July 9, 1992

1 Introduction

This is the user's manual for psd, the Portabe Scheme Debugger. Psd is a source

level debugger for the Scheme language, based on istrumenting the original

source code. Psd is placed under the GNU General Public License (\copyleft"),

so you are free to use, distribute and modify it as long as you let other people

do it, too. See the �le COPYING in the psd distribution for more details.

2 What You Need

In order to use psd you need GNU Emacs, a (preferably R4RS [1] compliant)

Scheme interpreter, the psd package and the cmuscheme package. GNU Emacs

and the cmuscheme package can be found at many major ftp sites, for example

nic.funet.�. These ftp sites also carry Scheme interpreters. A good place to

look for Scheme related material is the Scheme Repository at nexus.yorku.ca,

maintained by Ozan Yigit. Psd is available at cs.tut.� using anonymous ftp

(/pub/src/languages/schemes/psd.tar.Z).

3 Supported Systems

Psd is known to work with Aubrey Ja�er's scm and Oliver Laumann's elk. It is

known not to work with with sci, the interpreter in the Scheme to C compiler

system. It should be easy to modify psd to work with sci, though, as the main

problem is the default case for symbols.

It may be necessary to do some initializations in order to make psd work

with a given Scheme implemementation. For example, for elk it is necessary to

set the variables print-length and print-depth to a negative value. In order

1



to accomplish this, the psd startup code looks for a �le called psd-name.scm,

where name is the value of the Emacs variable scheme-program-name. If that

�le exists, it is loaded, otherwise the �le psd.scm is loaded.

4 Preparing Programs for Debugging

The easiest way to use psd is to use the GNU Emacs interface. The inter-

face requires the cmuscheme package, which you should probably have even

if you don't use psd. You can check if you are using cmuscheme by starting

up an inferior Scheme session and giving the command M-x eval-expression

RET (featurep 'cmuscheme) RET. If the result is t in the minibu�er, you are

using cmuscheme. To load the cmuscheme package, use the command M-x

load-library RET cmuscheme. You can automagically load cmuscheme every

time you start Emacs by putting the line

(require 'cmuscheme)

in your .emacs �le.

To use the interface, start up a Scheme session with M-x run-scheme. Then

give the command M-x psd-mode in the Scheme bu�er. If this does not work,

you have to load the �le psd.el with M-x load-file. The necessary Scheme

code is now loaded into your Scheme session. If you want psd to be loaded when

you start up a Scheme session, put the line

(setq inferior-scheme-mode-hook '(lambda () (psd-mode 1)))

in your .emacs �le.

To debug all procedures in a Scheme source �le, give the command C-c

d or M-x psd-debug-file either in the inferior Scheme bu�er, or in a bu�er

containing Scheme source. If everything goes well, psd will �rst produce an

instrumented version of your �le, and then load it. You can also go to a Scheme

bu�er and use the commands ESC C-x, C-c e and C-c C-e. If given a pre�x

argument, they will instrument the de�nition the cursor is on and load it into

Scheme. For example, the command C-u C-e will instrument a de�nition and

send it to the Scheme process.

If you have code in your �le that is evaluated in load time, for example

variable initializations, you may end up being in the psd prompt after one of

these commands. Just step thru the initializations, and you will end up at the

top level.

5 Running the Debugged Program

After the instrumentation is complete, you have in your Scheme environment top

level de�nitions equivalent to those that you would have gotten if you had loaded

2



the original source �le. However, all the procedures have been instrumented so

that you can step thru the evaluation process, and see in another Emacs window

where in the source code you are.

The debugged procedures can be invoked either from top level or from other

procedures. In order to stop the execution to a speci�c line, go to the line

and give the command M-x psd-set-breakpoint or C-x SPC. This will set a

breakpoint to the speci�ed line.

6 Debugger Commands

The current debugger top level loop is not very sophisticated, but undoubtedly

it will have more commands in the future. If you have suggestions of what would

be useful, feel free to contact me. The commands are:

val sym gives the value of sym in the current scope.

set! sym val sets the value of sym to val in the current scope.

g continues evaluation until the next breakpoint

w shows the current context as �le name and a list of procedure names. For

example, "/tmp/killme.scm:(encode encode-symbol)"means, that the

you are in �le /tmp/killme.scm, inside a procedure called encode-symbol,

which is inside the procedure encode.

s steps one step in the evaluation process. Each time an expression is about

to be evaluated, psd displays it and waits for a command. When an

expression has been evaluated, psd displays the result and waits for a

command.

n continues evaluation until evaluation reaches a di�erent line

r expr evaluates expr and returns its value as the return value of the current

expression

A list is taken to be a procedure call that is to be evaluated. All the essential

procedures in R4RS are visible to the evaluator. Any other command displays

a list of available commands.

If the debugger does not seem to be doing the right things, try the Emacs

command M-x psd-reset, which will clear all the breakpoints and reset the

runtime system.

3



7 Catching Run Time Errors

Psd tries to detect any run time errors before they are encountered. Before

every call to an essential procedure in R4RS, it checks the number of arguments

and their types. If a run time error would occur, psd stops execution and lets

the user inspect and modify the environment. In order to continue, use the

debugger command r and give a value that is to be returned as the result of the

call. This works of course only if the code where the call is made from is being

debugged.

8 Limitations of the Current Implementation

The current version handles all syntactic forms except =>, delay and unquoting.

Unquoting is supported in the sense that procedures containing quasiquote and

unquotations can de debugged, but it is not possible to step thru an unquotation,

or set a breakpoint within a quasiquotation.

Macros are not supported at all. It would require that the instrumentation

code would have to keep track of all macro de�nitions and be able to expand

macros in their full glory.

The reader understands symbols, boolean values, strings, vector, characters,

integers, simple 
oats and lists. Fancier numbers like complex numbers etc. are

not supported. They are not very hard to implement, they are just not on top

of the priority list for me. Hex, octal and binary numbers do work, though,

thanks to Edward Briggs.

One thing that psd is not guaranteed to preserve is the order of evaluation.

Because of the additional code that psd adds to the program, it is possible that

the instrumented version of a procedure call is evaluated in a di�erent order

than the original. If the Scheme implementation used evaluates all arguments

from left to right or right to left, there is no problem. If, however, the order

of evaluation is something more exotic, the order of evaluation may change. In

practice this is probably not a problem.

Because the instrumented programs and the runtime support for the debug-

ger live in the same name space, there are some names that can not be used in

the debugged programs. In psd, all the globally visible procedures start with

the pre�x psd-, and variables with the pre�x *psd-. Do not use these pre�xes

in your programs.

9 Command Summary

This is a short list of the available commands. The Emacs commands are:

4



C-c d psd-debug-�le

C-c C-e scheme-or-psd-send-de�nition-and-go

C-c e scheme-or-psd-send-de�nition

C-x SPC psd-set-breakpoint

ESC C-x scheme-or-psd-send-de�nition

M-x psd-reset clear all breakpoints and reset the psd runtime

The debugger commands are:

val sym give the value of sym

set! sym val set the value of sym to val

g run until the next breakpoint

w give the current context

s step one step in the evaluation process

n run until evaluation reaches another line

r expr return expr as the value of current expression

A list is taken to be a procedure call to be evaluated. It can also be a set!

form.

10 Acknowledgements

Thanks go to Edward Briggs and Aubrey Ja�er for their suggestions and modi-

�cations to psd. Also, special thanks go to Tatu M�annist�o for lively discussions

about psd and for keeping up the Scheme spirit in the department.

References

[1] Jonathan A. Rees and William Clinger, editors. The revised

4

report on the

algorithmic language Scheme. LISP Pointers, IV(3):1{55, July{September

1992.

5


